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Posets

Two structures of the same kind will be related if and only if
one is a substructure of the other; in this way, we form a poset.

Definition
A poset (X,≤) is a set X together with a reflexive,
antisymmetric, transitive binary relation ≤ on X. This relation
will be called an order.

Examples

1. The set of finite graphs with the subgraph order.

2. The set of finite graphs with the induced subgraph order.

3. The set A+ with the subword order.



Well quasi-order
Interesting properties of posets include: well quasi-order,
atomicity, labelled well quasi-order and better quasi-order.

Definition
An antichain is a set {a1, a2, . . . } such that ai ≰ aj if i ̸= j.

Eg. The words aba, abba, abbba, abbbba, . . . form an antichain.

Definition
A poset is well quasi-ordered (wqo) if it contains no infinite
antichains (or infinite descending sequences).

Eg. The set of words containing only the letter a is wqo as it
forms a chain

a ≤ aa ≤ aaa ≤ . . .

so there are no antichains at all.

WQO is often taken to be an indicator of the ‘wildness’ of a
poset – those which are wqo are comparatively ‘tame’.



Avoidance sets - intuition
We can also ask about properties of subsets of posets, and some
subsets of interest are avoidance sets.

We’ve seen that A+ with the subword order is not wqo if
|A| > 1.

What about its subsets?

ba

aa ab ba bb

bbbabbbabbbabaaabaaabaaa

We can get a subset by chopping off parts of the diagram, eg
avoiding aaa, ba as subwords.
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Avoidance sets - definition and decidability

Definition
If C is a collection of combinatorial structures with an order ≤
and B ⊆ C is finite, the avoidance set of B is

Av(B) = {c ∈ C | ∀b ∈ B, b ≰ c}.

Example

For {a, b}+ with the subword order, aaba ∈ Av(aaa), but
baaab /∈ Av(aaa).

Avoidance sets give rise to natural decidability questions: with
input B, we ask about decidability of properties of Av(B).



The wqo problem

▶ (C,≤) - a poset of combinatorial structures

The WQO Problem: Is it decidable, given B ⊆ C
finite, whether if Av(B) is wqo?

Note: if (C,≤) is wqo, its avoidance sets are also wqo so the
wqo problem is trivially decidable.



Overview - results for graphs

Theorem (Ding, 1992)

The wqo problem is decidable for graphs under the subgraph
order.

Theorem (Robertson & Seymour, 2004)

The set of all graphs is wqo under the graph minor order (so the
wqo problem is trivially decidable).

Open question.

Is the wqo problem decidable for graphs under the induced
subgraph order?



Overview - results for permutations
Definition
If σ, ρ are permutations, σ ≤ ρ under the non-consecutive order
iff σ is isomorphic to a subsequence of ρ.

Example

132 ≤ 42513 as 132 is isomorphic to 253; and 321 ≤ 21543.

Open question.

Is the wqo problem decidable for permutations under the
non-consecutive order?

Definition
If σ, ρ are permutations, σ ≤ ρ under the consecutive order iff σ
is isomorphic to a consecutive subsequence of ρ. Eg
321 ≤ 21543 but 132 ≰ 42513.

Theorem (McDevitt & Ruškuc, 2021)

The wqo problem is decidable for permutations under the
consecutive order.



Overview - results for words
Definition
u ≤ v under the non-consecutive order iff u is a non-consecutive
subword of v, eg aa ≤ abba and abc ≤ babcc.

Theorem (Higman, 1952)

If A is a finite alphabet, A+ is wqo under the non-consecutive
order.

Definition
u ≤ v under the consecutive order iff u is a consecutive subword
of v, eg abc ≤ babcc but aa ≰ abba.

Lemma
We’ve seen that A+ is wqo under the consecutive order iff
|A| = 1.

Theorem (McDevitt & Ruškuc, 2021)

The wqo problem is decidable for words under the consecutive
order.



WQO for structures with consecutive orders

▶ The wqo problem has been studied for words and
permutations under consecutive orders (McDevitt &
Ruškuc, 2021).

▶ This was done by associating avoidance sets with certain
digraphs/automata called factor graphs.

Structure Conditions on factor graph for wqo

Words no in-out cycles

Permutations no in-out cycles
no ambiguous cycles

no bicycle has a splittable pair

Can we do the same for equivalence relations?



Equivalence relations

Definition
An equivalence relation on X = {1, . . . , n} is a binary relation
on X which is reflexive, symmetric and transitive. It partitions
X into equivalence classes.

Examples

|13|2|4| |124|36|5|



Isomorphic equivalence relations

Definition
Two equivalence relations are isomorphic if, when we relabel
their smallest points 1, second smallest 2, etc, they are
identical.

Example

|1 6 | 3 | ∼= |1 3 | 2 | ∼= |3 9 | 5 |.

We consider isomorphic equivalence relations to be equal and
let Eq be the set of all equivalence relations on finite sets.



The consecutive order

Definition
σ is a sub-equivalence relation of ρ iff it can be embedded in ρ,
i.e. there is a 1-1 map f : σ → ρ such that:

1. If f(1) = k then f(2) = k + 1, f(3) = k + 2, . . . , and

2. x, y are in the same class of σ ⇐⇒
f(x), f(y) are in the same class of ρ.

Then we say σ ≤ ρ under the consecutive order.

Example

|1 2 | 3 |≤ |1 2 3 | 4 5 | as f : x 7→ x+ 1 defines a 1-1 map between
them satisfying conditions (1) and (2):
| 1 2 | 3 |≤ |1 2 3 | 4 5 |.

But |1 2 | 3 |≰ |1 | 2 4 | 3 5 |.



Another example

Definition
σ is a sub-equivalence relation of ρ iff it can be embedded in ρ,
i.e. there is a 1-1 map f : σ → ρ such that:

1. If f(1) = k then f(2) = k + 1, f(3) = k + 2, . . . , and

2. x, y are in the same class of σ ⇐⇒
f(x), f(y) are in the same class of ρ.

This is written σ ≤ ρ.

Example

|1 | 2 | 3 4 |≤ |1 2 5 6 | 3 | 4 7 | as the map f : x 7→ x+ 2 gives a 1-1
map between them satisfying both conditions.

For condition (2), see that f preserves the equivalence classes:
| 1 | 2 | 3 4 |≤ |1 2 5 6 | 3 | 4 7 |.



The wqo problem for equivalence relations
{|1 n | 2 . . . n− 1 |: n ≥ 5} is an infinite antichain of equivalence
relations.

Why? If |1 5 | 2 3 4 |≤ |1 6 | 2 3 4 5 | we would have to map the
class |1 5 | to |1 6 |, forcing 1 7→ 1 and 5 7→ 6. But if 1 7→ 1, we
have 5 7→ 5, a contradiction, so |1 5 | 2 3 4 |≰ |1 6 | 2 3 4 5 |.

So (Eq,≤) is not wqo, and it makes sense to ask about the wqo
problem for (Eq,≤):

The WQO Problem: Is it decidable, given B ⊆ Eq
finite, whether Av(B) is wqo?

We tackle the wqo problem by relating it to similar questions
about digraphs.

Next we take a short detour to introduce the necessary ideas
from graph theory.



Ideas from graph theory

Definition
If η, π are paths in a finite digraph, then η ≤ π under the
subpath order if and only if η is a subpath of π.

Definition
A cycle in a digraph is an in-out cycle if at least one vertex has
in degree > 1 and at least one vertex has out degree > 1.

Theorem (McDevitt & Ruškuc, 2021)

The set of paths of a finite digraph G under the subpath order is
wqo if and only if G contains no in-out cycles.



Factor graphs

Returning to equivalence relations, let B ⊂ Eq and consider
Av(B).

Let b be the maximum length of an equivalence relation in B.

The factor graph of B is the digraph ΓB with:

▶ Vertices: equivalence relations of length b in Av(B).

▶ Edges: σ → τ iff the last b− 1 points of σ are isomorphic
to the first b− 1 points of τ , or formally, σ↾[2,b]∼= τ↾[1,b−1].



Factor graph example

The factor graph of {|1 2 | 3 |} is:

|1|2|3| |13|2|

|1|23| |123|

|1 | 2 | 3 |→ |1 3 | 2 | because |2 | 3 | ∼= |1 | 2 |
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Equivalence relations trace paths
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Sub-equivalence relations and subpaths

Lemma: If σ ≤ ρ, then Π(σ) ≤ Π(ρ).



Paths can be traced by > 1 equivalence relation

|1|2|3| |13|2|

|1|23| |123|

Example

| 1 3 | 2 |→ |1 | 2 | 3 |→ |1 | 2 | 3 | is traced by | 1 3 | 2 | 4 | 5 |
and | 1 3 | 2 5 | 4 |.
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Special vertices

Definition
A special vertex is one where the largest entry is in a class of
size one.
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Special vertices

Definition
A special vertex is one where the largest entry is in a class of
size one.

Special vertices can give choices in the placement of the next
entry of an equivalence relation - it can either be added to:

1. a brand new class; or

2. an existing class containing much smaller elements.

Example

|1 3 | 2 |→ |1 | 2 | 3 |→ | 1 | 2 | 3 | was traced by

1. |1 3 | 2 | 4 | 5 |, where 5 was added to a new class; and

2. |1 3 | 2 5 | 4 |, where 5 was added to the class of 2.



Special vertices in cycles

Lemma
If the factor graph ΓB contains a special vertex in a cycle,
Av(B) is not wqo.

|1|2|3|

Consider the equivalence relations:

▶ Which trace paths that go around the cycle i ≥ 3 times;

▶ Where a new entry is added to an existing class the first
and last times we enter the special vertex;

▶ Where a new class is created whenever else we enter the
special vertex.

|1 4 | 2 6 | 3 | 5 |, |1 4 | 2 7 | 3 | 5 | 6 |, |1 4 | 2 8 | 3 | 5 | 6 | 7 |, . . . .
These form an infinite antichain.

In this way, an infinite antichain can be created from any cycle
containing a special vertex.



Antichains from in-out cycles

Recall:

1. a digraph contains an in-out cycle iff its paths are not wqo
(McDevitt & Ruškuc, 2021);

2. if Π(σ) ≰ Π(ρ) then σ ≰ ρ .

Lemma
If ΓB contains an in-out cycle, Av(B) is not wqo.

Proof.

▶ ΓB is not wqo so contains an infinite antichain of paths
π1, π2, . . . by (1).

▶ Take σ1, σ2, . . . s.t. σi traces πi.

▶ By (2), σ1, σ2, . . . is an infinite antichain of equivalence
relations.



Decidability result

Theorem: Av(B) is wqo if and only if the factor graph ΓB

contains no in-out cycles or special vertices in cycles.
(VI & Ruškuc, 2023)

Theorem: It is decidable whether Av(B) is wqo,
so the wqo problem is decidable for equivalence relations

under the consecutive order. (VI & Ruškuc, 2023)



Example

Example

Av(|1 2 | 3 |) is not wqo as its factor graph contains both in-out
cycles and a special vertex in a cycle:

|1|2|3| |13|2|

|1|23| |123|



More examples

Example

Av(|1 2 3 |, |1 3 | 2 |, |1 | 2 3 |) is not wqo as its factor graph
contains a special vertex in a cycle:

|1 | 2 | 3 ||1 2 | 3 |

Example

Av(|1 | 2 | 3 |, |1 2 | 3 |) is wqo as its factor graph has neither
in-out cycles nor special vertices in cycles:

|1 2 3 ||1 3 | 2 | |1 | 2 3 |



Comparisons

Structure Conditions on factor graph for wqo

Words no in-out cycles

Equivalence relations no in-out cycles
no special vertices in cycles

Permutations no in-out cycles
no ambiguous cycles

no bicycle has a splittable pair



Further questions - other structures

▶ We ask the wqo problem for other combinatorial structures
under consecutive orders.

▶ Ongoing work is looking at this for structures consisting of
several equivalence relations and permutations.

▶ It would also be interesting to investigate the wqo problem
for digraphs.



Further questions - varying the order

Definition
Equivalence relations σ, ρ are related under the non-consecutive
order iff there is an 1-1 map f : σ → ρ such that

▶ x, y are in the same class of σ ⇔ f(x), f(y) are in the same
class of ρ.

Lemma (VI & Ruškuc, 2023)

The poset of equivalence relations under the non-consecutive
order is wqo, so the wqo problem is trivially decidable.

Theorem
The wqo problem is decidable for equivalence relations under the
consecutive order.

Question: If we change the order to respect the underlying
linear order, but not consecutively, can we answer the wqo
problem?



Further questions - atomicity

Definition
If (X,≤) is a poset and C ⊆ X:

▶ C is downward closed if c ∈ C and a ≤ c imply a ∈ C.

▶ If C downward closed, C is atomic if it cannot be expressed
as a union of two downward closed, proper subsets.

Theorem
A downward closed subset C of (X,≤) is atomic if and only if it
satisfies the joint embedding property: for any x, y ∈ C there
exists z ∈ C such that x, y ≤ z. (Fräıssé, 1954)

Examples

▶ (N,≤) is atomic.

▶ ({1, . . . , 10},≤d), where ≤d is the divisibility order, is not
atomic as no numbers are divisible by 3 and 5.



Further questions - atomicity

Structure Conditions on factor graph for atomicity

Words strongly connected or a bicycle
small words well behaved

Equivalence relations strongly connected or
a bicycle with no ambiguous vertices

small relations well behaved

Permutations strongly connected or
a bicycle with no ambiguous cycles
small permutations well behaved

(Words & permutations by McDevitt & Ruškuc, 2021.)

Questions:

▶ Can we answer the atomicity problem for other structures
under consecutive orders?

▶ Is there an overarching picture behind these results?



Thank you for listening!


